Teorema 3 (transformarea Hilbert)
O condi ie nec. i suf. ca
$$G(j\tilde{S}) = R(\tilde{S}) + jI(\tilde{S})$$
, de p trat integr.,
s fie r sp. la frecv. al unui sist. din. lin. realist este ca:
 $I(\tilde{S}) = -\frac{1}{\int_{-\infty}^{+\infty} \frac{R(y)}{\tilde{S} - y} dy,$ $R(\tilde{S}) = +\frac{1}{\int_{-\infty}^{+\infty} \frac{I(y)}{\tilde{S} - y} dy.$
 \mathcal{O} . Necessitatea. $g(t) = 0, t < 0, \Rightarrow g(t) = g(t) \dagger (t).$
Se aplic transf. Fourier: $\mathcal{F}\{\dagger(t)\}$ $G(j\tilde{S})$
 $G(j\tilde{S}) = \frac{1}{2}G(j\tilde{S})*\left(\frac{1}{j\tilde{S}} + u(\tilde{S})\right), G(j\tilde{S}) = \frac{1}{2}G(j\tilde{S})*\frac{1}{j\tilde{S}} + \frac{1}{2}G(j\tilde{S})*u(\tilde{S}),$
 $G(j\tilde{S}) = \frac{1}{j}G(j\tilde{S})*\frac{1}{\tilde{S}}, R(\tilde{S}) + jI(\tilde{S}) = \frac{1}{j}\int_{-\infty}^{+\infty} \frac{R(y) + jI(y)}{\tilde{S} - y}dy.$
 $R(\tilde{S}) = \frac{1}{j}\int_{-\infty}^{+\infty} \frac{jI(y)}{\tilde{S} - y}dy, jI(\tilde{S}) = \frac{1}{j}\int_{-\infty}^{+\infty} \frac{R(y)}{\tilde{S} - y}dy.$

Suficien a. Utilizând de ex. $R(\tilde{S}) = +\frac{1}{2} \int_{-\infty}^{+\infty} \frac{I(y)}{\tilde{S} - y} dy$ se scrie: $R(\tilde{S}) = \frac{1}{2} \int_{-\infty}^{+\infty} \tilde{J}(y) \frac{2}{\tilde{J}(\tilde{S} - y)} dy = jI(\tilde{S}) * \frac{2}{\tilde{J}\tilde{S}}$. (3.45) Cu $\frac{2}{\tilde{J}\tilde{S}} = \mathscr{F}\{\operatorname{sgn} t\}, \operatorname{din} (3.45) \operatorname{rezult} :$ $g_p(t) = g_i(t) \operatorname{sgn} t,$ $g(t) = g_i(t) + g_p(t) = g_i(t) + g_i(t) \operatorname{sgn} t.$ $g(t) = \begin{cases} g_i(t) - g_i(t) = 0, & t < 0, \\ g_i(t) + g_i(t) = 2g_i(t), & t > 0. \end{cases}$ \hookrightarrow Sistemul dinamic liniar este realist.

Exemplul 3.6
S se arate c urm toarea func ie de transfer satisface
teorema 3.

$$G(s) = \frac{1}{s+1}.$$
Pentru $s = j\tilde{S}$ rezult

$$R(y) \qquad R(\tilde{S}) = \frac{1}{\tilde{S}^2+1}, \quad I(\tilde{S}) = -\frac{\tilde{S}}{\tilde{S}^2+1},$$

$$I(\tilde{S}) = -\frac{1}{\int_{-\infty}^{+\infty}} \frac{1}{(y^2+1)} \frac{1}{(\tilde{S}-y)} dy = -\frac{1}{f} \int_{-\infty}^{+\infty} \frac{1}{\tilde{S}^2+1} \left(\frac{y+\tilde{S}}{y^2+1} + \frac{1}{\tilde{S}-y}\right) dy =$$

$$= -\frac{1}{\tilde{S}^2+1} \lim_{r \to +\infty} \left[\int_{-r}^{+r} \frac{y+\tilde{S}}{y^2+1} dy + \lim_{v \to 0} \left(\int_{-r}^{\tilde{S}-v} \frac{1}{\tilde{S}-y} dy + \int_{\tilde{S}+v}^{+r} \frac{1}{\tilde{S}-y} dy \right) \right] =$$
M. Voicu, IA (VI) C 11 (37) 3

$$\begin{split} &= -\frac{1}{\tilde{S}^{2}+1} \lim_{r \to +\infty} \left[\frac{1}{2} \ln(y^{2}+1) \Big|_{-r}^{+r} + \tilde{S} \arctan y \Big|_{-r}^{+r} - \\ &\quad -\lim_{v \downarrow 0} \left(\ln|\tilde{S}-y| \Big|_{-r}^{+S-v} + \ln|\tilde{S}-y| \Big|_{S+v}^{r} \right) \right] = \\ &\quad -\lim_{v \downarrow 0} \left(\ln|\tilde{S}-y| \Big|_{-r}^{+S-v} + \ln|\tilde{S}-y| \Big|_{S+v}^{r} \right) + 2\tilde{S} \arctan r - \\ &\quad -\lim_{v \downarrow 0} (\ln|\tilde{v}-\ln|\tilde{S}+r| + \ln|\tilde{S}-r| - \ln|\tilde{v}) \right] = \\ &\quad = -\frac{1}{\tilde{S}^{2}+1} \lim_{r \to +\infty} \left(2\tilde{S} \arctan r + \ln \left| \frac{\tilde{S}+r}{\tilde{S}-r} \right| \right) = -\frac{\tilde{S}}{\tilde{S}^{2}+1} = I(\tilde{S}). \quad \bullet \\ \\ &\quad \text{M. Voicu, IA (VI)} &\quad \text{C 11 (37)} &\quad \text{C 11 (37)} &\quad \text{C 11 (37)} \end{split}$$

$$\begin{split} & \text{ în mul . s. realiste cu acela i } M(\check{S}), \text{ SDM are defazajul minim.} \\ & \text{ SDM satisfac (3.51), (3.52) - condi iile lui Bode.} \\ & \textbf{Exemplul 3.8} \\ & \textbf{Fie SDM: } G_m(s) = \frac{bs+1}{(a_1s+1)(a_2s+1)} \quad \text{cu } a_1, a_2, b > 0, \quad \text{i} \\ & \text{ SDNM: } \quad G_{nm}(s) = \frac{bs-1}{(a_1s+1)(a_2s+1)}. \quad \text{S se compare defazajele.} \\ & \text{ Avem } \quad G_m(j\check{S}) = \frac{1+jb\check{S}}{(1+ja_1\check{S})(1+ja_2\check{S})}, \quad G_{nm}(j\check{S}) = \frac{-1+jb\check{S}}{(1+ja_1\check{S})(1+ja_2\check{S})}. \\ & \text{ Modulele satisfac: } \quad M_m(\check{S}) = M_{nm}(\check{S}) = \sqrt{\frac{1+(b\check{S})^2}{[1+(a_1\check{S})^2][1+(a_2\check{S})^2]}}. \\ & \text{ M. Voicu, IA (VI) } & \text{ C11 (37) } \\ \end{split}$$

Structura SDNM: $\begin{aligned}
G(s) &= \frac{Q_1(s)Q_2(s)}{P(s)} \times \frac{Q_2(-s)}{Q_2(-s)} = \frac{Q_1(s)Q_2(-s)}{P(s)} \times \frac{Q_2(s)}{Q_2(-s)}; \quad (3.53) \\
P(s), Q_1(s) \text{ au zerourile } \{\text{Res} < 0\}, \text{ iar } Q_2(s) \text{ în } \{\text{Res} > 0\}; \\
Q_2(-s) \text{ are zerourile } \{\text{Res} < 0\}. \\
\text{Multiplic } (3.53) \text{ cu } \times \frac{Q_2(-s)}{Q_2(-s)} \Rightarrow G(s) = G_m(s) \times G_t(s), \quad (3.54) \\
\text{cu: } G_m(s) &= \frac{Q_1(s)Q_2(-s)}{P(s)} - \text{SDM}, \quad G_t(s) = \frac{Q_2(s)}{Q_2(-s)} \quad \begin{array}{c} \text{filtru ideal} \\ \text{wtrece-tot} \\ \text{(FITT)} \end{array} \\
|G_t(j\breve{S})| &= \frac{|Q_2(j\breve{S})|}{|Q_2(-j\breve{S})|} = 1, \quad |G(j\breve{S})| = |G_m(j\breve{S})| G_t(j\breve{S})| = |G_m(j\breve{S})|. \\
\text{Sist. cu acela i } M(\breve{S}) \text{ se disting numai prin FITT, cf. } (3.54). \\
\end{aligned}$

4. Stabilitatea i stabilizarea sistemelor automate 4.1. Principiul argumentului a. Integrala pe contur a derivatei logaritmice Fie $G(s) = \frac{Q(s)}{P(s)}$, $s \in C$, func ia de transfer a unui sist. din. liniar; P(s), Q(s) - relativ prime i grad <math>Q(s) = m, grad P(s) = n. Ipoteza 1. Fie x un contur închis, în pl. C, în interiorul c ruia G(s) are m_{χ} zerouri i n_{χ} poli (incl. multipl.). **Teorema 1** (Cauchy) În ipoteza 1, G(s) satisface: $\int_{\chi} \frac{G'(s)}{G(s)} ds = 2fj(m_{\chi} - n_{\chi})$. (4.2) M. Voicu, IA (V) $C_{11(37)}$

Fie m_0 i n_0 nr. zerouri finite i poli fini i în {Re s = 0}. Pentru G(s) punctul de la *infinit*, situat pe x_N , este: fie un zero (pt. m < n), fie un pol (pt. m > n) de multipl. /m - n|. Pe $x_N \hookrightarrow : \tilde{m}_{x_N} - \tilde{n}_{x_N} = m_0 - n_0 - (m - n)$. Fie $m_{xN} = m_+$ i $n_{xN} = n_+$ nr. zerouri i poli în {Re s > 0}. Din $\arg G(j\check{S})\Big|_{-\infty}^{+\infty} = 2f(n_{x_N} - m_{x_N}) + f(\tilde{n}_{x_N} - \tilde{m}_{x_N})$. se ob ine **varia ia total a argumentului** $\arg G(j\check{S})\Big|_{-\infty}^{+\infty} = 2f(n_+ - m_+) + f(n_0 - m_0) + f(m - n)$. (4.9) Întrucât $G(-j\check{S}) = \overline{G}(j\check{S}), \arg G(j\check{S})\Big|_{-\infty}^{+\infty} = 2\arg G(j\check{S})\Big|_{0}^{+\infty}$, din (4.9) \hookrightarrow $\arg G(j\check{S})\Big|_{0}^{+\infty} = f(n_+ - m_+) + \frac{f}{2}(n_0 - m_0) + \frac{f}{2}(m - n)$. (4.10) M. Voicu, IA (VI) $C_{11}(37)$ 17

c. Criteriul Cremer-Leonhard Fie $\Delta(s)$ – polinom monic, cu coeficien i reali i grad $\Delta(s) = r$. Teorema 3 (Cremer-Leonhard) U(s) este hurwitzian \tilde{O} $\arg \Delta(j\tilde{S})\Big|_{0}^{+\infty} = \frac{f}{2}r.$ (4.11) \mathcal{D} . Fie r_+ , r_0 nr. zerouri (cu multipl.) în {Re s > 0}, {Re s = 0}. Din (4.10), pentru $G(s) = \Delta(s), n_{+}=0, n_{0}=0, n=0, m_{+}=r_{+}, m_{0}=r_{0}, m=r_{0}, m$ $\arg G(j\check{S})\Big|_{0}^{+\infty} = f(n_{+} - m_{+}) + \frac{f}{2}(n_{0} - m_{0}) + \frac{f}{2}(m - n),$ (4.10)⇒ arg $(j\check{S})\Big|_{0}^{+\infty} = -fr_{+} - \frac{f}{2}r_{0} + \frac{f}{2}r.$ (4.12)Suf. Din (4.11), (4.12): $r_{+} = 0$, $r_{0} = 0$; $\Delta(s)$ – hurwitzian. *Nec*. $\Delta(s)$ – hurwitzian: $r_{+}=0$, $r_{0}=0$. Din (4.12) rezult (4.11). M. Voicu, IA (VI) C 11 (37) 18

Teorema 5 (Nyquist) Sist. autom. cf. fig.VI.30 este BIBO-stabil dac i numai dac $\arg F(j\check{S})\Big|_{-\infty}^{+\infty} = 2f n_+ + f n_0.$ (4.17) $\arg F(j\check{S})\Big|_{-\infty}^{+\infty} = 2f(n_{+} - z_{+}) + f(n_{0} - z_{0}).$ (4.16)D. Suf. (4.17) cu (4.16) $\Rightarrow z_{+}=0, z_{0}=0 \Rightarrow$ BIBO-stabilitatea. *Nec.* Sist. aut. BIBO-stabil i $z_{+}=0$, $z_{0}=0$; din (4.16) \Rightarrow (4.17). $G_d(s)$ are n_+ i n_0 poli în {Re s > 0} i {Re s = 0}. Sist. în circ. deschis poate fi arbitrar BIBO-instabil! Cf. Teoremei 5, reactia negativ are efect stabilizant dac i numai dac are loc (4.17), respectiv se aloc adecvat polii sistemului automat . C 11 (37) M. Voicu, IA (VI) 22

Caz particular
Teorema 7 (Nyquist)
Sistemul automat, cf. fig.VI.30, în care $G_d(s)$ are cel mult
doi poli în $s = 0$ i restul sunt în {Re $s < 0$ }, este BIBO-stabil
$\tilde{\mathbf{O}}$ la parcurgerea locului $G_d(j\tilde{S})$, pentru \tilde{S} cresc tor
de la – ∞ la + ∞ , punctul –1+ j0 r mâne la stânga
i în afara lui. ■
$G_d(j\check{S})$ se parcurge pentru \check{S} cresc tor de la – ∞ la + ∞ ,
adic în sens negativ pe c. Nyquist, fig.VI.1.
Punctele situate la dreapta locului $G_d(j\check{S})$ sunt interioare.
Se ha urez partea dreapt a locului $G_d(j\check{S})$.
Dac $-1+j0$ nu este în zon ha urat

Cf. fig.VI.35, func iile de transfer ale componentelor sunt: Elementul de prescriere i traductorul sunt

poten iometrele P₁, P₂ (la axul SM prin Rm):

$$G_{\rm Pl}(s) = \frac{E_u(s)}{Y_p(s)} = k_1, \ G_{\rm P2}(s) = \frac{E_y(s)}{Y(s)} = k_1$$

Regulatorul:

$$G_{\rm R}(s) = \frac{E_{\rm c}(s)}{E(s)} = -k_0 \left(1 + \frac{k}{Ts+1}\right).$$

Servomotorul:

$$G_{\rm SM}(s) = \frac{b(s)}{E_{\rm c}(s)} = -\frac{1}{T_{\rm l}s(T_{\rm 2}s+1)};$$
 (-) pentru a se compensa (-) din $G_{\rm R}(s)$.

Reductorul mecanic:

$$G_{\rm Rm}(s) = \frac{Y(s)}{\mathsf{b}(s)} = k_2.$$

Abaterea $E(s) = E_u(s) - E_y(s)$ este prop. cu eroarea $Y_p(s) - Y(s)$. M. Voicu, IA (VI) C 11 (37) 31

