

$$\begin{aligned} G(j\tilde{S}) &= \frac{\tilde{S}_{n}^{2}}{\tilde{S}_{n}^{2} - \tilde{S}^{2} + j2' \tilde{S}_{n}\tilde{S}} = \frac{1}{1 - y^{2} + j2' y}, \ y = \frac{\tilde{S}}{\tilde{S}_{n}}, \\ \begin{cases} M(\tilde{S}) &= |G(j\tilde{S})| = \frac{\tilde{S}_{n}^{2}}{\sqrt{(\tilde{S}_{n}^{2} - \tilde{S}^{2})^{2} + 4' {}^{2}} \tilde{S}_{n}^{2}} \tilde{S}_{n}^{2}} = \frac{1}{\sqrt{(1 - y^{2})^{2} + 4' {}^{2}} y^{2}}} \\ \{(\tilde{S}) &= \arg G(j\tilde{S}) = -\arg \frac{2' \tilde{S}_{n}\tilde{S}}{\tilde{S}_{n}^{2} - \tilde{S}^{2}} = -\arg \frac{2' y}{1 - y^{2}}. \end{aligned}$$

Diagrama Bode
$$\begin{cases} A_{ub}(\tilde{S}) = 20 \lg M(\tilde{S}) = 20 \lg \frac{\tilde{S}_{n}^{2}}{\sqrt{(\tilde{S}_{n}^{2} - \tilde{S}^{2})^{2} + 4' {}^{2}} \tilde{S}_{n}^{2}} \tilde{S}_{n}^{2}} = 20 \lg \frac{1}{\sqrt{(1 - y^{2})^{2} + 4' {}^{2}} y^{2}}} \\ \{(\tilde{S}) &= -\arg \frac{2' \tilde{S}_{n}\tilde{S}}{\tilde{S}_{n}^{2} - \tilde{S}^{2}} = -\arg \frac{2' y}{1 - y^{2}}. \end{cases}$$

M. Voici, M(V) C10(35) \\ \end{cases}

2.4. Trasarea diagramei Bode prin linii aproximante Ig/G(jŠ)| i { (Š) pot fi aproximate grafic prin linii frânte. **Exempul 2.1** S se traseze diagrama Bode pentru $G(s) = \frac{10}{s} \cdot \frac{0.1s+1}{10s+1}$. $s = j\tilde{S} \Rightarrow G(j\tilde{S}) = \frac{10}{j\tilde{S}} \cdot \frac{1+j0.1\tilde{S}}{1+j10\tilde{S}}$, $|G(j\tilde{S})| = \frac{10}{\tilde{S}} \cdot \frac{\sqrt{1+(0.1\tilde{S})^2}}{\sqrt{1+(10\tilde{S})^2}}$, $\arg G(j\tilde{S}) = -90^\circ + \operatorname{arctg}(0.1\tilde{S}) - \operatorname{arctg}(10\tilde{S})$. $\int A_{dB}(\tilde{S}) = 201g10 - 201g\tilde{S} + 201g\sqrt{1+(0.1\tilde{S})^2} - 201g\sqrt{1+(10\tilde{S})^2}$ $(\tilde{S}) = -90^\circ + \operatorname{arctg}(0.1\tilde{S}) - \operatorname{arctg}(10\tilde{S})$.

	$y(t) = M_0 u(t - 2)$	<i>T</i>). (3.10)	
Defini ia 2			
(3.10) se nume te	sistem (eleme	ent) cu timp mort. ■	
Func ia de transfe	r a sistemului (3	3.10) este:	
	$G(s) = M_0 e^{-Ts};$	$T \ge 0$ – timpul mort.	
b. Filtre ideale f r	distorsiuni de l	faz	
Defini ia 3			
Un sistem în care:			
	$\begin{cases} M(\check{S}) \neq \text{constant} \\ \{(\check{S}) = -T\check{S}, \end{cases}$	^{nt,} $\Rightarrow G(j\check{S}) = M(\check{S})e^{-jT\check{S}},$	
se nume te filtru ideal f r distorsiuni de faz . ■			
M. Voicu, IA (VI)	C 10 (35)	16	

	_		
Defini ia 8			
Un sistem dinamic (real sau abstract) se nume te realist dac satisface principiul non-anticip rii :			
Aceast proprietate se exprim cu ajutorul lui $g(t)$ prin: $g(t) \equiv 0, t < 0.$ (vezi II.3.2.a)			
Observa ia 3.2			
Sistem realist nu este sinonim cu sistem fizic realizabil			
Se spune c un sistem abstract este <i>fizic realizabil</i> dac el este concretizabil ca sistem real.			
Evident, este posibil ca un sistem abstract <i>realist</i> s nu fie fizic realizabil.			
M. Voicu, IA (VI) C 10 (35) 30			

Teorema 2 $g(t) \text{ al unui sist. dinamic liniar realist este complet determinat fie de partea real , fie de partea imaginar a lui <math>G(j) = g(j) = g(t) + g(t)$ i $G(j\check{S}) = R(\check{S}) + jI(\check{S}) = \mathscr{F}\{g(t)\},$ se pot scrie rela ille: $G(j\check{S}) = R(\check{S}) + jI(\check{S}) = \int_{-\infty}^{+\infty} [g_p(t) + g_i(t)] e^{-j\check{S}t} dt = \int_{-\infty}^{+\infty} [g_p(t) + g_i(t)] [\cos\check{S}t - j\sin\check{S}t] dt = \int_{-\infty}^{+\infty} g_p(t)\cos\check{S}t dt - j\int_{-\infty}^{+\infty} g_p(t)\sin\check{S}t dt + \int_{-\infty}^{+\infty} g_i(t)\cos\check{S}t dt - j\int_{-\infty}^{+\infty} g_i(t)\sin\check{S}t dt.$ $= 0 \qquad = 0$ $G(j\check{S}) = R(\check{S}) + jI(\check{S}) = \int_{-\infty}^{+\infty} g_p(t)\cos\check{S}t dt + \int_{-\infty}^{+\infty} g_i(t)(-j)\sin\check{S}t dt.$ M. Voicu, IA (VI) C 10 (35) 21

Din

$$\begin{split} & R(\check{S}) = \int_{-\infty}^{+\infty} g_p(t) (\cos \check{S}t) dt = \int_{-\infty}^{+\infty} g_p(t) e^{-j\check{S}t} dt = \mathscr{F}\{g_p(t)\}, \\ & -j \sin \check{S}t \end{split}$$

$$jI(\check{S}) = \int_{-\infty}^{+\infty} g_i(t) (-j \sin \check{S}t) dt = \int_{-\infty}^{+\infty} g_i(t) e^{-j\check{S}t} dt = \mathscr{F}\{g_i(t)\}, \\ & +\cos St \end{split}$$
se ob ine:

$$g_p(t) = \mathscr{F}^{-1}\{R(\check{S})\} = \frac{1}{2} - \int_{-\infty}^{+\infty} R(\check{S}) e^{j\check{S}t} d\check{S}, \\ g_i(t) = \mathscr{F}^{-1}\{jI(\check{S})\} = \frac{1}{2} - \int_{-\infty}^{+\infty} jI(\check{S}) e^{j\check{S}t} d\check{S}. \end{split}$$
M. Vocu, $A(V)$ $C10(35)$ 33

Folosind

$$\begin{split} g_{p}(t) &= \frac{1}{2} - \int_{-\infty}^{+\infty} R(\check{S}) e^{j\check{S}t} d\check{S}, \\ g_{i}(t) &= \frac{1}{2} - \int_{-\infty}^{+\infty} jI(\check{S}) e^{j\check{S}t} d\check{S}. \end{split}$$
i inând seama de

$$g(t) &= g_{p}(t) + g_{i}(t) = \begin{cases} 0, & t < 0, \\ 2g_{p}(t) &= 2g_{i}(t), t > 0. \end{cases}$$
se ob ine:

$$g(t) &= \begin{cases} 0, & t < 0, \\ 2g_{p}(t) &= 2g_{i}(t), t > 0. \end{cases}$$
M. Voicu, IA (VI)

$$\begin{split} C 10(35) &= 1 \end{cases}$$

$$\text{Din} \quad g(t) = \begin{cases} 0, & t < 0, \\ \frac{1}{2} \int_{-\infty}^{+\infty} R(\check{S}) e^{j\check{S}t} d\check{S} = \frac{1}{2} \int_{-\infty}^{+\infty} jI(\check{S}) e^{j\check{S}t} d\check{S}, t > 0, \\ \int_{-\infty}^{+\infty} R(\check{S}) e^{j\check{S}t} d\check{S} = \int_{-\infty}^{+\infty} jI(\check{S}) e^{j\check{S}t} d\check{S}, t > 0, \\ \cos t + j\sin t, & \cos t + j\sin t, \end{cases}$$
se ob ine
$$\int_{-\infty}^{+\infty} R(\check{S}) \cos\check{S}t d\check{S} + \int_{-\infty}^{+\infty} R(\check{S}) j\sin\check{S}t d\check{S} = \\ = \int_{-\infty}^{+\infty} jI(\check{S}) \cos\check{S}t d\check{S} + \int_{-\infty}^{+\infty} jI(\check{S}) j\sin\check{S}t d\check{S}, \\ 2\int_{0}^{+\infty} R(\check{S}) \cos\check{S}t d\check{S} = 2\int_{0}^{+\infty} I(\check{S}) \sin\check{S}t d\check{S}, \\ \int_{0}^{+\infty} [R(\check{S}) \cos\check{S}t + I(\check{S}) \sin\check{S}t] d\check{S} = 0, t > 0. \end{cases}$$
M. Voicu, IA (VI)
$$C10(35) \qquad C10(35) \qquad C1$$